The four million

The contributions to classic oldWeather as they have changed with time

Contributions to classic oldWeather: Time runs from top to bottom, each descending ribbon is a different contributor, the colours mark different ships. (Bigger, printable, version).

We started 2016 with some good news from classic oldWeather – the 3-millionth transcribed weather observation from the US Government Arctic logbooks. It’s great to finish it with some more – we have just rescued our 4-millionth.

Those 4-million observations come from more than 480,000 transcribed pages, and are the work of 4,730 different people. We’ve looked before at how the work has been divided up between the participants, but to celebrate 4 million I wanted to go beyond that, and show not only what had been done, but also when.

This is oldWeather meets abstract expressionism, but the descending stripes are not abstract – each one represents one contributor: If you’ve transcribed a page for oldWeather-classic, one of them is you. Time runs down, from the project launch at the top, to the present at the bottom, and the colours distinguish work done on the different ships.

We can see most clearly the large and consistent contributions of our most committed and expert participants – truly the backbone of the project. But also the brief bursts of interest produced by newsletters and media mentions, and everything in between. Again I hope everyone is proud of their contribution – it’s taken us all to do it; and in spite of the awesome size of our achievement (4 million new observations) we are, just about, still all on the same page.

Global Warming as you’ve never seen it before

Temperature anomalies from the HadCRUT dataset: Blue regions are colder than normal, red warmer. Where the indicator is missing, we have no observations.

Working on the world’s weather observations means I spend a lot of time looking at maps. I like the equirectangular (plate carrée) projection (fills the screen nicely, latitude and longitude are all you need to know), but it does have a couple of diadvantages: Map geeks disdain it as both boring and badly distorted, and it’s hopeless for looking at the Arctic and Antarctic.

You can work around both of these problems by the technical trick of ‘rotating the pole’. There is no fundamental reason why a map has to have the North Pole at the top. If you rotate your globe so that some other point is at the top before performing the projection that turns it into a flat map; you can make a map that is still equirectangular, but looks very different, and has the Arctic (or location of your choice) in the middle. It’s no less distorted, but it is less boring, as the distortion has moved into different places.

HadCRUT is a global temperature monitoring dataset. We use it to keep track of global warming, amongst other purposes. It combines thermometer observations, from ships and land weather stations, to make estimates of temperature change month-by-month back to 1850. The sea-temperature observations we are rescuing in oldWeather will be used to improve HadCRUT.

HadCRUT is constructed on a regular grid on a conventional equirectangular map. Looking at it on a map with a rotated (and rotating) pole gives a fresh look at what we know about global temperature change (and a sharp reminder of the problems with map projections). I like this visualisation because not only does the changing observation coverage show the same sort of historical effects we’ve already seen in the pressure observations, but it illustrates what we know and what we don’t about past temperature: The growing global warming is unmistakable in the last few decades, in spite of the large regional variability and observational uncertainties, but smaller-scale changes, further back in time, can still have large uncertainty – new observations could make a big difference.

Free at last

We highlight improvements to the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) in the latest Release 3.0 (R3.0; covering 1662–2014). ICOADS is the most widely used freely available collection of surface marine observations, providing data for the construction of gridded analyses of sea surface temperature, estimates of air–sea interaction and other meteorological variables. ICOADS observations are assimilated into all major atmospheric, oceanic and coupled reanalyses, further widening its impact. R3.0 therefore includes changes designed to enable effective exchange of information describing data quality between ICOADS, reanalysis centres, data set developers, scientists and the public. These user-driven innovations include the assignment of a unique identifier (UID) to each marine report – to enable tracing of observations, linking with reports and improved data sharing. Other revisions and extensions of the ICOADS’ International Maritime Meteorological Archive common data format incorporate new near-surface oceanographic data elements and cloud parameters. Many new input data sources have been assembled, and updates and improvements to existing data sources, or removal of erroneous data, made. Coupled with enhanced ‘preliminary’ monthly data and product extensions past 2014, R3.0 provides improved support of climate assessment and monitoring, reanalyses and near-real-time applications.

Sounds exciting, doesn’t it? Well, it’s even more exciting than it sounds, because that’s the abstract of Freeman, E., Woodruff, S. D., Worley, S. J., Lubker, S. J., Kent, E. C., Angel, W. E., Berry, D. I., Brohan, P., Eastman, R., Gates, L., Gloeden, W., Ji, Z., Lawrimore, J., Rayner, N. A., Rosenhagen, G. and Smith, S. R. (2016), ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol.. doi:10.1002/joc.4775 which has just hit the scientific literature, and which describes the latest version of the International Comprehensive Ocean-Atmosphere DataSet, the collection of marine weather data.

Everything about oldWeather has been free from the start: our ambition has always been to make the information in our logbooks openly available for anyone to use, and our results already have seen use in datasets, reanalyses, historical and personal projects, … But whenever anyone asks me “What are you doing with the results of this project?”, I’ve always answered “We’re going to put the new observations in ICOADS – to make them available for all future uses, in climate and other fields”. With ICOADS R3.0, we have finally achieved this: ICOADS is internally arranged in ‘decks’ (a reminder that data collection is older than the digital computer) – it now includes decks 249 “World War I (WW1) UK Royal Navy Logbooks” and 710 “US Arctic Logbooks” – clearly illustrated in figure 1.

I’ve been working as a scientist for a while now, but the publication of a new paper is still something of an event. Scientific papers come in many forms: some describe wild new ideas, brave experiments, or dramatic breakthroughs – this one is nothing like that; it just reports the work of many people, over several years, scavenging observations from wherever we can find them, systematising them, quality controlling them, analysing them, and now releasing them. It makes up for its lack of drama by being useful – the surface marine record is one of the most widely used datasets in all of climate: our observations are used directly in the monitoring datasets that measure climate change, they are assimilated in all reanalyses, they provide boundary conditions and validation for the models we use for predicting future change, and they provide calibration to palaeoclimate reconstructions of the deep past.

So from now on, if you’ve contributed to oldWeather, keep an eye out for any new climate results. Whether it’s a new global temperature record, a prediction of climate for the next generation, a study of changes in flood or drought risk, a government report on climate impacts and adaptation, … anything really. When you see it, square your shoulders and stand a little taller – that result owes something to you.

Better bad weather with oldWeather

A spaghetti-contour plot of a storm in 1916 as reconstructed by the 20th Century reanalysis.  On the left, without oldWeather observations, on the right with the oldWeather ships added.

A spaghetti-contour plot of a storm in 1916 as reconstructed by the 20th Century reanalysis. On the left, without oldWeather observations, on the right with the oldWeather ships added. The yellow dots mark observations used in the reconstruction – the additional yellow dots in the right image are from Royal Navy ship logs transcribed by oldWeather.

Next week sees an important event in the calendar of the observational climatology community: the ninth annual meeting of the Atmospheric Circulation Reconstructions over the Earth (ACRE) project, in Maynooth, Ireland. I’ll be there to talk about the new knowledge we are generating with oldWeather, and I thought I’d share a sneak preview here.

The picture above is a pair of contour plots: on a map contour lines mark places with the same height and they are used to show the shape and size of hills. Here the lines mark places with the same atmospheric pressure, and they show the size and shape of a valley in the atmosphere – an atmospheric depression – a storm. The picture is messy because this is also a spaghetti plot – I have 56 different maps of the same storm (the individual ensemble members of the 20th century reanalysis) and I’ve drawn all 56 in the same image.

In an ideal world we’d know exactly the size and shape of this storm, so all 56 maps would be exactly the same and the plot would show pin-sharp simple contours. We’re not there yet, but adding the oldWeather observations to the reconstruction has made things a lot better – our map of this storm is much more precise than it was before.

Too windy for Zeppelins

100 years ago today – 31st May 1916, saw the start of a major fleet action between the British and German navies: The battle of Jutland.

This is right in the middle of the period covered by the original oldWeather project, so you’d think we had all the logbooks and observations, at least from the British half of the battle, but alas, it’s not so. The Grand Fleet sounds impressive, and with as many as 40 major warships surely was impressive, but it didn’t travel much: The doctrine of ‘Fleet in being’ means that all those battleships stayed in port as a threatening influence rather than travelling to distant locations, and that puts them right at the bottom of our priority list for transcription, and we’ve never looked at them.

So we don’t have the Grand Fleet, but we can still reconstruct the weather of the battle, and our observations still make a major contribution to the reconstruction:

Weather (contours are pressure, streamlines show wind and temperature), as reconstructed by 20CR version 2c, for the battle of Jutland. Dots mark observations used to make the reanalysis - red dots are observations from oldWeather, yellow dots are observations from other sources

Plenty of our ships are contributing to that weather reconstruction – in port on the West coast, on patrol or convoy duty in the North Atlantic, and they are doing a good job describing the dominant weather feature – the low pressure moving into the Norwegian Sea. But the North Sea around Jutland is pretty bare of observations – two major fleets, and we have almost nothing from either of them. The reason we don’t have them is that we don’t need them – the European weather stations give us a pretty good picture of the weather anyway, and the ships were only out of port for two days, so they wouldn’t be a huge asset to science; but it’s still a pity from the historical perspective, we’ll keep an eye out for a future opportunity, both in the UK and in Germany.

The weather did, apparently, play a part in the battle – strong winds grounded the Zeppelin fleet that would otherwise have been scouting and bombing on 31st May – and it was one of those Zeppelins that engaged (on June 1st) the only member of our fleet to have participated in the action at all: HMS Fearless was not big enough to mix it with the battleships and battlecruisers; but she was there, and you can read the story we rescued from her logs at (and see the observations she made in the video above).

The battle had no winners – 9,823 men died, and 25 ships were sunk, including one (HMS Invincible) who’s story helped inspire the start of oldWeather.

The USS Jeannette: Arctic explorer and Space Weather pioneer

Everyone likes a good story. When Old Weather began transcribing the logs of 19th century Arctic explorers it soon became clear that the USS Jeannette’s story was a particularly good one. In 1879, destined for the North Pole, the USS Jeannette and a crew of 33 left San Francisco amid much celebration and rejoicing. 3 years later only 13 crew members returned.


(U.S. National Archives and Records Administration)

The story of the Jeannette is both epic and tragic. She was stuck in the grip of the ice floes for nearly two years before sinking as a result of being crushed by the ice. Then followed a 1,000 km trek across the ice. Eight crew members were killed in a storm and a further twelve died of starvation and cold. The story unfolded as the logs were transcribed. Before long it became clear that the logs also contained an unexpected resource. Night after night while imprisoned by the ice the crew of the Jeannette recorded their observations of the aurora. Volunteers took note and began posting these observations on the forum. Chris Scott from Solar Stormwatch realised that this might yield some interesting historical information and asked the volunteers to keep posting. After a few months there was quite a list. Historical auroral records are extremely valuable in providing a long term picture of solar activity and space weather and can lead to a better understanding of the processes involved. Having an interest in all things solar, especially Solar Stormwatch, and a fondness for a good spreadsheet I began collating all the aurora posts from the forum and it wasn’t long before Chris and I realised that there was some real science hidden in the Jeannette’s logs. Science which ought to be made public. Maybe we could write a paper.

The Jeannette’s Executive Officer, Lieutenant Charles Chipp carried out experiments whenever there was an auroral display and recorded his own observations together with readings from his galvanometers in a notebook that he intended to publish on his return. Lt. Chipp, however, was one of the twenty who didn’t survive the expedition but, incredibly, his notebook did and with Kevin Wood and Mark Mollan’s help it was located in the U.S. National Archives and Records Administration and was scanned for us to use.

Working with Chris Scott and a solar expert colleague of his, David Willis, I spent 2 years analysing the aurora data from the logs, crew members’ personal diaries and Lt Chipp’s notebook. We were surprised at the detail recorded and were able to examine the frequency, strength, direction and colour of the auroral displays as observed from the deck of the marooned ship. We also studied the effect of the lunar phase on the visibility of aurorae. With the help of records from the Royal Observatory, Greenwich we found instances of the auroral oval expanding equatorwards during great solar storms and found some evidence for auroral activity recurring at 27-day intervals implying that some active regions were surviving longer than one solar rotation. At a time when atmospheric science was in its infancy the crew of the Jeannette was doing a superb job of gathering valuable data.

As a volunteer citizen scientist, I am immensely proud that our paper has now been published in Astronomy and Geophysics the journal of the Royal Astronomical Society. It’s been quite a ride – fascinating and frustrating in equal measure. I am especially pleased that some of Lt. Chipp’s data has finally seen the light of day albeit 135 years late and we’re hoping to have a closer look at his galvanometer readings eventually. There are ship’s logs from all the other Arctic explorers to examine too – Old Weather seems to have become Old Space Weather!

You’ll find the paper in Astronomy & Geophysics here.  I hope you enjoy the read.

neōn katalogos

It’s not all about the shiny and the new – we should appreciate, also, the virtues of the classics: In particular classic oldWeather, our original and ongoing project to rescue data from the US Government Arctic logbooks, which has now transcribed more than three million (3,000,000) weather observations.

All the contributors I could not tell nor name, nay, not though ten tongues were mine and ten mouths and a voice unwearying, but now I will tell the leaders of the ships and the ships in their order:”

  • Of the Albatross (1884); leelhat and Hanibal94 were captains, with steeleye and jd570b and Zovacor, with 569 more. They brought 150,734 weather observations, rich in pressures, temperatures, and wind directions.
  • Of the Albatross (1890); hurlock and Ravendrop were captains, with p3nguin53 and listritz and 1049 more. They brought 62,931 weather observations.
  • Of the Albatross (1900); Danny252, hurlock and pommystuart were captains, with HHTime, JanetET-S and wendolk with 482 more. They brought 57,991 weather observations.
  • Of the Bear, veteran of many campaigns; lollia paolina, gastcra and Hanibal94 were captains, with DennisO, jil and pommystuart, with 410 more. They brought 349,015 weather observations
  • Of the Concord; pommystuart and gastcra were captains, with Hanibal94 and MAPurves, and 1207 more. They brought 380,191 weather observations.
  • Of the Corwin; gastcra, pommystuart and lollia paolina were captains, with but 24 more. They brought 9,588 weather observations.
  • Of the Jamestown (1844); kimma001 was captain, with gastcra and Zovacor and 92 more. They brought 83,533 weather observations.
  • Of the Jamestown (1866); leelhat, Hanibal94 and kimma001 were captains, with 445 more. They brought 128,922 weather observations.
  • Of the Jamestown (1879); lollia paolina was captain, with gastcra, LouisaEvers, smith7748 and 475 more. They brought 93,696 weather observations
  • Of the Jamestown (1886); leelhat was captain, with lollia paolina with 385 more. They brought 82,624 weather observations.
  • Of the Jeannette; gastcra, Clewi and jil were captains, with with 67 more. They brought 42,982 weather observations and much knowledge of the ice.
  • Of the Patterson; Hanibal94, gastcra and asterix135 were captains, with helenj, avastmh and 101 more. They brought 334,146 weather observations.
  • Of the Perry; leelhat and Hanibal94 were captains, with exim_202, elizabeth_s, and rbertin1068, with 427 more. They brought 7,352 weather observations.
  • Of the Pioneer; Hanibal94 was captain, with gastcra and helenj and 86 more. They sought out 182,586 weather observations.
  • Of the Rodgers; leelhat was captain, with Hanibal94, avastmh and 50 more. They saved 19,718 weather observations from the fire.
  • Of the Rush; lollia paolina was captain, with leelhat and researchib with 368 more. They carried 25,174 weather observations.
  • Of the Thetis; lollia paolina was captain, with jil, leelhat, KookyBird and 716 more. They brought 220,493 weather observations.
  • Of the first Unalga; Hanibal94 and propriome were captains, with gastcra and Caro, with 92 more. They brought 136,001 weather observations
  • Of the Second Unalga; Hanibal94 was captain, with gastcra, Caro, and 36 more. They brought 10,395 weather observations
  • Of the Vicksburg; leelhat and lollia paolina were captains, with 393 more. They brought 357,525 weather observations
  • Of the Yorktown; Lekiam and lollia paolina were captains, with gastcra with 737 more. They brought 279,546 weather observations
  • Of the Yukon; gastcra and Hanibal94 were captains, with 80 more. They brought 31,111 weather observations

Collectively awesome

We launched the new a month ago, which means that the volunteers using the site have provided quite a bit of new data, and we can start to analyse it. This is one of my favourite moments in any project – first blood, when we get the initial sense of what we’ve got, how it’s going to work, what we can learn from it.

One of the golden rules of statistical analysis is “first plot the data” – always start by making a simple visualisation, so you can be sure you understand what you’ve got, and you’re not missing anything obvious. But the oldWeather data is not easy to plot: the database contains records from hundreds of people making thousands of annotations on dozens of different logbook pages; what, exactly, should we look at?

So I’ve taken inspiration from Listen to Wikipedia, and asked ‘what would it look like if we could see (and hear) the data as it came in – in (accelerated) real time?’ The video below shows every contribution to over a three hour period on December 3rd 2015. The number of pages shown is the number of volunteers contributing at each point in time. Each box drawn, and sound played, is one annotation, a contribution to the project. Blue boxes contain weather data, yellow boxes ship positions, orange boxes dates, and red boxes other events; pages that have moved on to the transcription phase have grey boxes.

Listen to oldWeather: December 3rd 2015.

December 3rd was when we launched the new site, so we can see a large change in the number of people participating as they learn about the launch. It’s instantly clear that it’s working – we are collecting annotations and transcriptions in quantity, as we hoped. There is much to be learned from careful examination of visualisations like this, but mostly I think it shows the power of the project – the awesome capability of collective public science.

Note that this shows only data from the new Panoptes version of oldweather. It does not include data from the whaling site – I’m still working on that.

A new view of new ships

Cruising the Arctic Ocean can be a slow and lonely business – long voyages, harsh weather, and endless danger from sea ice and other challenging events. Maybe you have a feeling you’ve been stuck for too long in the confines of a single ship on an endless voyage. So we’re very excited to report the first sightings of a new fleet – with new ships, and some new equipment.

The Greenland Patrol. Original painting by William H. RaVell III, a retired United States Coast Guard Chief Warrant Officer. Used by permission of the artist. From top, left to right: the armed trawler Alatok, buoy tender Storis, the Wind-class icebreaker Eastwind, and the cutter Northland.

The Greenland Patrol. Original painting by William H. RaVell III, a retired United States Coast Guard Chief Warrant Officer. Used by permission of the artist.
From top, left to right: the armed trawler Alatok, buoy tender Storis, the Wind-class icebreaker Eastwind, and the cutter Northland.

The first thing you will notice is that has changed a lot: it looks different, and the way we are transcribing is very different: The US ship logbooks contain what are basically tables of weather data, so we have tried to make capturing the information in these tables easier and faster, while retaining the flexibility to mark and transcribe other events. As always when we change the site, these new tools will take some getting used to, so please persevere and experiment until you find a way that works for you; there is help available on both the forum and Talk boards.

The new logbooks will also be a bit different from what we’ve been doing lately. We have split them into shorter deployments of a year or two; so completing a voyage will be less of a commitment, and you’ll have a chance for a bit of shore leave now and again, or to choose a different kind of ship altogether.

Thanks to Gina and Mark at the Archives, for finding and photographing all the new logbooks; to Roger and the Zooniverse development team for getting the fleet launched on the new website; and to our expert volunteers, for suggesting better ways to add voyages and preparing the help and reference pages for all the new ships.

We hope you will like the new oldWeather, but if you fancy something different, there are other options. The Whaling site is there with different logs and a different interface; and, just for those who love the original version, we are keeping it around – it’s now classic oldWeather.

A double century of centennial records

Australian cricketer Herbie Collins

Very few achieve 200

What was life really like in the Royal Navy 100 years ago? Where did the ships go? How did the crews spend their days? What were the noteworthy, and the routine, events in their lives?

The Royal Navy logbooks we worked through in the original version of oldWeather provide a uniquely powerful insight into these questions – they are primary records of exactly what happened. But they are not easy to use – hard to read, not indexed, or searchable, and often full of obscure technical language.

When we transcribed the weather in the logs we caught many of the historical events as well, and we were able to make a formatted history file for each ship – linking each logbook page image to transcribed events and information from that day, and we assembled those ship histories on our partner website

Those history files made from the raw transcriptions are a good start, but they are far from perfect: Some events we caught cleanly, some only half-stopped, and our decisions on what to leave were usually good, but not always. So our team of volunteer editors have been working through the raw files editing and improving them: reviewing the decisions made in the heat of transcription, correcting mistakes, merging multiple versions, adding missing events, incorporating pithy commentary and expert summaries of key points, and adding maps of the ship journeys.

As so often with oldWeather, this has been a lot of work – a major task tackled with care and patience by an increasingly-expert team of volunteers. Their achievement is clear to see, comparing the edited histories (in bold on this page) with the raw versions shows a huge improvement in clarity, accuracy, completeness, and value. And the score of the editing team has mounted steadily – they have just released their 200th edited ship history.

To get to 200 ships edited is an awesome achievement, but of course we still have power to add: HMS Cricket is done, as are Cardiff, India, New Zealand and Sydney; but Dunedin, Durban, Perth, Delhi and Capetown are yet to be conquered. Are you available for selection?